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SUrl'ARY

Mathematical modeling is becoming a vital tool in ngineerfr.g design.
These models have been used to provide decision suppo t to designers of
systems characterized by many design choices. Howeve , for the design of
complex systems, these models become too large and rsome to be of
significant value. As a result, research has progre sed in t.he
decomposition of the design problem.

A decision support system, serving as a compute basedlaid for
engineers designing weapon systems, must integrate procedures dealing with
designing for producibility and designing for supportability with those
dealing with designing for performance cost and schedule'" (ULCE
I,,plementation Plan, 1987). One of the characteristics of large weapon
system development that causes difficulties in achieving this integration
is the hierarchical nature of the design process. Typically, a system is
designed in terms of subsystems which are required to meet certain
specifications. Problems begir to arise when these specifications cannot
be met. Consequently, these design processes may be enhanced by a
computer-based system that supports the hierarchical nature of design.

This research examines the application of mathematical modeling and
knowledge-based system techniques to the development of decisig support
systems to support engineering design. /Ir.
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ENGINEERING DESIGN WITH DECISION SUPPORT:
AN APPLICATION OF GOAL DECOMPOSITION

1. INTRODUCTION

Engineering design in its broadest sense refers to the

activity of selecting and placing materials to form a

system. Because of the inherent complexities, design engineers

have increasingly depended upon mathematical modeling to help

guide the design process l2]. However, for the design of large

systems, these models quickly become too large and cumbersome to

be of significant value. As a result, research has progressed

into the decomposition of the design problem with the intent of

breaking the main design into a series of smaller design problems

that can be solved and then recombined in the hope of generating

a good global design.

Figure 1 illustrates a network model of the design

decomposition problem, The node at the top level (level 0) of

the network represents the system which is to be designed. As we

pass downward through the network, the parts of the system are

exploded into greater detail, until we reach the bottom of the

network where no further decomposition is possible.

The network shown in Figure 1 can be thought of as actuailly

conLaining two different types of optimization problems: (1) A

high level optimizatiun, and (2) Several lower level

optimizations. The high level optimization is ,!quivalent to

answering the question, "What type of system do we want and what

I = il = : ] = 1 . ... I I ] " I III IIIIIi



do we want it to be able to do?" An example of this type of

optimization problem, which is typically characterized by

multiple objectives, can be found in [5]. In the case that

several designs have already been established, Pareto optimal

designs can be determined by the method given in (11] to reduce

to list of candidate designs to some managable number. The design

decisions that are made at this level are then passed downward to

the next level (level 1) in the form of system specifications.

At the middle and lowest levels in the network, the

objective is not to optimize the design of the subcomponents over

some set of objectives, but instead to meet some stated level of

attributes that has been providea ',y a parent optimization. In

some cases it may be suboptimal for a subcomponent to over-

perform as well as under-perform. For example, in designing an

aircraft, we would like to achieve a specified level of speed (an

attribute measuring performance); however, optimizing the wing

design for speed would cleaily be suboptimal if the landing gear

of the aircraft is not designed to accommodate the greater

speeds.

Of course, other objectives besides performance may be of

interest. Reliability, cost, supportability and producibility

are some objectives that frequently must be addressed in

designing systems. In each case, a stated level of achievement

is what is required at the subsystem level.

The need for communication between levels in the hieratrchy

of Figure 1 is currently satisfied by multiple design iterations

in real world design processes. In fact, it must be emphasized

that a design of a large, complex system is characterized by many

2



design changes through iterations. As a result, decision support

for design decomposition should accommodate these design

alterations brought about by new information passed between

levels of the network.

L.i The Rationale Behind Decision Support

Decision support for the design process has several

appealing functions besides potentially improving the ult im ate

system design. A decision support system (DSS & ,uld provide

greater managerial control of the design proces example, a

DSS should be a mechanism for coordinating suL /s !m designs.

This would allow the designer to recognize when a particular

subsystem design is insufficient to meet system needs, and what

the best alternative designs are. This feature would generate

critical information early in the planning phase, and therefore

direct management's attention to the important design issues.

In addition, using a support system would allow the designer to

determine the system degradation due to not meeting a speci|ftc

system specification.

The purpose of this paper is to describe a goat

decomposition approach that can be useful in a DSS for the

planning phase of engineering design. In the following section

we describe some of the approaches that currently exist for

decision support of the design process. In section 3, ai goa,

decomposition method is examined and related to the network in

Figure i. In addition, some refinements to the oa, a

decomposition algorithm are suggested. Section el contains two

3



example applications. Section 5 conLains the concluding remarks.

2. DECISION '!oPPORT FOR THE DESIGN PROCESS

The engineering design problem is typically expressed as:

(PI) min f(x,p)

subject to: gi(xp) _ 0, i = I, .. . ,

h.(x,p) 0, j = 1,....J.

In this model, the vector x is a vector of design variables; that

is, these are the variables that represent the freedoms of ,hoice

that the design engineer has available. The vector p is a veclor

of model parameters.

Johnson and Benson [81, [9j, have decomposed the design

problem bY treating a subset of variables in the design problem

as parameters (p) and optimizing over the remaining variables.

The orig i nal subset of "parameters" are then released and

optimi zed.

S obieszczanski-Sob iesk i , et.al., [13], [L4 Y, have u se(I

linear decomposition in an attempt to simplify the large

nonlinear models that frequently represent a des ign I)rob Iem.

This decomposition is accomplished by cor, puting the sensitivity

0 f the global solution to changes in subproblem solutions [151,

:Ind represent i n these changes by first order approximat Ions.

The ultimxtte advantages of" this approach result from the expl icit,

iticlusion of subproblem constraints in the global optimization

model .md a reduction in the number of variables in the g [obiiI

model. In recent work [61, Haftka has attempted to improve upon

the linear decomposition method by removing the difficulties
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encountered due to discontinuities in the derivatives that

migrate upwards through the hierarchy.

Several authors have suggest the use of knowledge-based

systems to aid in the design construction. These approaches can

be dichotomized by the type of knowledge required in the system

and the use of that knowledge. [n one case, the knowledge is

used for optimization [1], [2]. Systems of this type can be

thought of as addressing the more gen-!ral issue of how knowledge

can be used to aid in the search of optimal solutions for

mathematical models that are characterized by nonlinearities.

Surprisingly, the use of knowledge specific to the design domain

has not been used to full advantage in these systems.

The other type of knowledge-based system contains knowledge

specific to design, but does not emphasize optimization [3], [4i.

While these systems can produce quality designs, the designs are

based on heuristics and are therefore best suited for producing

designs that meet. stated specifications.

3. GOAL DECOMPOSITION

In this paper we will examine a method of decomposition that

makes use of goal programming. One of the primary motivating

factors for this appronch is that it is felt that the emplo.inerlt.

of goals instead of "pure constraints" conforms closely to thLi

type of decision muk;.ng currently used in the ii. itialI des i g

process. Moreover, ti.e decision support architecture which is

,xamni ned may take advantage of a variety of other model ng

techn iques current ly available; i.e., the Sobieszczanski-Sobieski

5!



approach, knowledge-based models, etc.

In what. follows, we will use the term objective to mean a

state that a decision maker has identified as desirable to

attain. The term attribute is used to describe a measure whi,:h

can be used to determine the degree to which the desirable state

has been achi-ved. We will assume throughout this paper that.

with sufficient perseverance, a set of attributes may be

dot.ormined that will measure the objective to the satisfactiion of

the decision maker.

3.1 Decision Variables

One of the fundamental characteristics that differentiatets

the goal decomposition approach from tile methods of

decomposition that have been found in the mechanicali/aerospacce

engineering literature is the treatment of design variables,

Consider once agnin the design hierarchy depicted in Fiifure I.

Imagine that an optimization has been performed at level f .

rni ormat ion has been passed down from level 1 to level 2 via t he

vector u. This vector contains the attributes (,f Lthe

sub)eomlponent being des igned at level 2 that ;,re des i red from Ihi,

perspective of the component being de.signed at level 1. As a

result, the vector u describes what it is that we wnnt. built ( 1. he

subcomponent at level 2).

The. optimization at level 2 in ., I I de s t ribe how w,

will build that subcomponent by fur, - .e f inement of the

.uthomionent. into its major subcoomponen t S. Tle design v r i ia let-

at level 2 are a vector w that contain the- desir(ed itttribuLes of'

th,, stitcomponent ;it the :trd level of the hierarchy. Th(-se vaIiie.s

6i



are determined from an optimization that will choose w so that

the attributes of level 1 (u) are met as closely as possible

while not violating any constraints that are placed on w.

The goal programming formulation at level i, i 1,... I-l,

may be described as

(F-2) min Z bkdk + b - d I)k k k k

such that:

fk(v) - d+ + - 1 . . K
k +k k = k k k',. .K,2

w S 0. 3)

As described above, the value of uk tin (2) was determined from a

goal optimization at level (i-I), i = 2,...,I-l. In the case

that the value of u k was generated at the Oth level (the top

level), some other multiobjective technique might have been used

to determine the desired values of the attributes of the top

1 eve I.

The values b and b are weights assigned to the
k k

deviations dk and d respectively, which are the amount by

which we have exceeded or fallen short of the kth goa[. The

function fk(wV) is the link between the subcomponent attributes

and the component attribute uk.

The actual value of the kth attribute tha" c:in he achieved

in (P2) is the value of f k(w) in equation (2) (recall that the

actual value that we would like to achieve is uk*). Thu value of

the kth attribute achieved, fk(w*), where w* is the optimal valu,.

of w in (P2), may not equal Uk * for two reasons: (1) The goal set

designated by equations (2) may be overly demanding and therefore

7



all of the goal may not be achievable; (2) The space 0 in

equation (3) may constrain the problem from achieving all of the

goals.

The goal decomposition algorithm can be stated as follows:

Al. Optimize the attributes of level i, i I,... ,r-i,
by mathematically relating those attributes to
attributes of the subcomponents (level (i-l)).

A2. Using the values of the level i attributes obtained
in the optimization at level (i-I) as goals,
optimize the attributes of level (i+l),
i = .... I-1.

A3. ff necessary, perform a reoptimization at level
i by passing constraints on the attributes
from level (i+l) to level i.

Several iterations between levels (i+l) and i may be necessary to

obtain a satisfactory design. The constraints that are added to

the level i model in step A3 are needed to cause a reallocation

of resources. An example of the addition of these constraints is

shown in the first application of Section 4.

Since all of the goals in (P2) may not be met, the weighting

b and b in the objective function will tend to dictate which
k k

goals are satisfied. Next we will show how these weight.LIg way

be selected so that the pursuit of the goals at level i is

consistent with the desired design attributes at level i- I).

Theorem 1: Let (P2) describe tl-e optimization i't level i and let

the following model describe the descendant optimization nit. 1ov-.t

( L+l):



++4

(P3) min c.e. + c-e. (4)

such that.:
+ -

g ON) - e+ + e. : i '., j : l . . j, (5)

x - X. (6)

+

Then, to first order approximation, the values of c. and c.
J J

should be chosen according to the following algorithm:

(BI) For each fk(w*) in equation (2), use the fo[lowing
+

rules to compute new constants ak and ak:

B(It. ) I if f k (1*) -- uk' let a k b k , ak = b k
(BI.2) If fk(y*) > Uk, let ak bk, a- = bk;

k k+ k
(B1.2) If fk(4*) < uh, let ak b- , = ba.

+ --

(B2) Form the values c. and c. in equation (4) by3 3

+ +

c. = £ ak Ofk/aw (w*), (7)
k

ca k af klaf w (w*). (8)
k

Proof:

Consider the first order Taylor's series expansion of fk (w)

around w*:

fk/W) - fk(W*) afk/law (w*) (w.- w. )k k

The term on the left hand side of (9) is the amoun t that Ltie

optimal value fk(w*) has been missed by the selection of w. Th(,

right hand side of (9) contains the term (w. - w. ), which is

the amount by which the level (i+L) optimization was unable to

mueet the goal w. that. was passed down from the teve] i

opl. imizat.ion. Thus equation (9) depicts the influence that t.h e

9



failure to meet goal w.* at level (i+l) has on the optimization3

at level i. If, for example, f(w*) > uk , the optimal value of

w* caused the attribute represented by fk(_*) at level i to

be exceeded, and 1 0, d- = 0 in equation (2). If the value
ek k

of w realized from
w. = g.(x), ~j Iwj j _ ... (N,

does not equal w. (the goal) but instead exceeds w. , then theJ 3

value of the objective function at level i will change by
+

bk +f (y) - f (0w)],

(here we assume that w is near w* so that fk(w) > Uk V.

But this is just the right hand side of (9) multiplied by the

appropriate weight from the level i optimization. Multiplying

the right hand side of (9) by b+ yields the result for the

special case that fk(w*) > Uk* (number 2, part A of the

algorithm). The other parts of the algorithm can be determined

from similar arguments.

3.2 Refinements to the Goal Decomposition A1gorithin

(1) If there are no constraints in equation (3) that

connect w.'s from different subproblems, then a feasible design3

at level i may be assured easily at level (ill) by adding the

constraint

g.(_x) •

to problem (P3).

(2) If the optimization at level (i+l) does not meet the

goals w*, then a reoptimization at level i may generate a better

(or feusible) solution when taking into account the best values,

t0
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of the attributes that could be achieved at level (i+l). In this

case, the following cuts may be added to equation (3);

(A) If g.(x*) w.*, then add no cuts;

(B) If g.(x*) > w.*, t.ien add the cut

w > g (x*);

(C) If g.(x*) < w.*, then add the cut

w. < g.(x*).
J 3

(3) The problem that a multipurpose component (a component

with multiple parent nodes in the decomposition network) causes

can be coordinated in this process by adding separate goals from

each parent optimization. For example, if a multipurpose

component is passed down the goal wl* I from one parent

optimization and w 2 from the other parent optimization,

then the following two goals should be added to the subproblem:

g 1 (x) + d1  - d+ 1,1 = l

g(x) + d - d2 = 2,
1-2 2

where w gL(x). The coefficients in the objective function

will help determine which of these contradicting goats should

dom inate.

4. APPLICATIrONS

4. 1 A Conceptual Ap!1 i,ation

The first system design that will be optimized using goal

decomposition Ls depicted in Figure 2a. We begin with this

conceptual system to illustrate the techniques that may be

employed to model system cost and reliability, Similar models

may be built to include attributes measuring system performaince,

iI



supportability, and producibility.

The network decomposition of this system is shown in Figure

2b. At level 1, the system is viewed as consisting of two

components in series, as indicated by the dotted line in Figure

2a. We will assume that Component I may be viewed as consisting

of two identical components in parallel, while component 2

consists of two components in series.

We shall also assume that an optimization has been performed

at level 0 that specified the target values of the reliability

and cost of the entire system to be R# = .995 and C* $2000.

Let:

R = Reliability of component i, i z 1,2,

- Probability thut the component operates without
failure over a specified time interval,

C. = Cost of component i, i = 1,2,

R.. = Reliability of subcomponent (i,j), i = I,2,
j 1,2,

C.. = Cost of subcomponent (i,j), i = 1,2, j = 1,2.
.j

It is also assumed that R and R2 must be at least .95 and .92.

respectively, and that the total budget for the system is $2600.

In order to build a mathematical model of the system, it is

first necessary to determine how reliability influences cost.

Suppose that by experience it is known that the reliability of

the subcomponents is r(,lat.cd to the cost of the subcomponents in

the following way:

CI 1 = -200 ln{1 - R1i(2 - RII)}, (I(I)

C1 2  C1), (It)

2 = 1.21(1 - H2 1 ), (12)

12



C2 2  - 1/(1 - R22). (13)

Notice that in each of these cases the cost of the subcomponent

increases rapidly as the reliability approaches 1.

The development of the cost functions C 1 and C for an

optimization at level 1 in Figure 2b presents two significantly

different problems. Component 1 consists of two identical

components in parallel; and, therefore, the cost function may be

written simply as

C I C11 + C12

= -400 In{l - R 1), (14)

since

R =R11(2 - R (15

On the other hand,

C2 C 21 + C22 (i6)

cannot be written as a simple function of

R2 = R2 1 R2 2 . (17)

Consequently, the developer of a model has two alternaLive

approaches: (1) Include in the level I optimization model

mathematical expressions that involve R 2 1 and R 2_, which nre

level 2 attributes; or (2) Estimate the cost function C', as a

function of R2 . The former alternative regresses toward the

proh[,ým that prompted decomposition in the first. place: the

model. begins to grow larger because we have decided to include

too much detail in the model at the higher levels in th, network.

The second alternative risks the loss of some information in tho

estimutiun process but. maintains the spirit of decomposition.

For example, using equations (12) and (13), the follutwiing

12



table of costs for alternative designs may be easily constructed:

R2 i (i 1,2) C2 1  C22,

9 $ 12 $ 10
.925 16 13.3
.95 24 20
.975 48 40
.99 120 100
.99b 240 200
.999 1200 1000

Table 1--C21 and C22

Using equation (17) and different combinations of R21 and

R22' values of C2 may be computed from Table 1. Next, a Least

square estimution technique may be used to develop an estimate oi'

C2 as a function of R2 . Such a model was developed for this

example from 15 combinations of R21 and R22 which yielded the

cost function:

-1
C2 = 154.2 + 4.8(1 - Rq) (18)

The optimization model at level I may now be written as:

(MI min z 5000,1 +

such that

R1 R2 - d1 + d1  .995
+

C1 + C2 - d + d- 2000
1I 2 2 21 -

C + C 2 < 2600

d d 0-+ --

d~d-
2

.95 < R 1

.92 ( R, 1

2 4



as well as equations (14) and (18) are satisfied and all of the

variables in the model are non-negative.

The coefficients in the objective function of (Ml) reflect

the trade-ofts that were judged reasonable by the decision makers

at level 0 and have been assumed for this example. The optimal

solution to (Ml) generated by GINO [10] is:

z = 158.187 d 2  0 C2 = 455.48

d I .032 d 2  0 I= .97896

d = 0 C 1 1544.52 R2 =.98407

4.1.1 Level 2 Optimization Models

To generate a model that optimizes the design of the

subcomponents, we need to use the values of C. and R., i = ),2,
1 1

that were computed in the optimal solution to (MI). In addition,

the results of Theorem 1 are needed to search for solutions that

are consistent with the level I optimization. The models (H1l)

and (M12) for components 1 and 2 respectively and the ir

solutions may be found in appendix A.

(Mll) and (M12) contain constraints that are local to the

subcomponent design as depicted by equation (6). For example, in

(Mil), Ril < .8. The solutions for C. and R. in (Ml) are used as

the goals in (MlI) and (M12). Also notice that the constraints

0.95 < R, < I have been included in (Ml[) as suggested in (1) of

section 3.2.

Table 2 compares the values of R. arid C., i = 1,2, that were

generated in the solutions of (MI) with (MiI) and (M12). It is

clear from this table that the largest value of 1 that Can
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possibly be generated is .96, and that $1287.55 is the largest

budget needed; otherwise, additional dollars would have caused

the solution of N I in (Mll) to be larger.

Derived from Achieved at
Variable Level 1 Level 2

R .97896 .96

C1  1514.52 1287.55

R .98407 .97752

C 2  455.48 455.48

Table 2--Attribute Goals and Values Realized
in (All) and (012)

If the constraints R < .96 and C , 1287.55 are added to1 - 1 -

(MI), the new solution to (Ml) becomes

z 216.272 d' = 0 C2 = 712.45
+2

d .043 d., = 0 R1= .96

d 0 Cl = 1287.55 R2 - .9914

This solution is, in fact, the globally optimal design; i.e., the

design that would be generated if we had built one model that had

contained all of the constraints on the component and

zubcomponent designs.

Iu summary, in order to generate the globally optimal

design, it was necessary to pass information Qownward through the

decomposition network that described the desired attributes of

the system. Information in the form of constraints was passed

upward through the network that indicated the best achievable
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values of the attributes. A reoptimization was performed that

reallocated the resources (in this case budget dollars) to

improve the design. Further optimization iterations, in general,

would continue to improve the design.

4.2 A Second Application

Consider the problem of designing a water pumping system and

a structural support for the pumping system. As shown in Figure

3a, it is assumed that the water pumping system consists of two

parallel pumps that draw water from a lower reservoir and pump

the water into a reservoir that is 150 feet above the lower

reservoir (161. The pumping system is to be positioned on a :30

foot reinforced concrete beam of depth "30 inches as discussed in

[9]. The decomposition network for the pump/beam system is shown

in Figure 3b.

Assume that a budget of $950 may be spent on the project but

that the desired budget is $900 (as determined in an optimization,

at level 0). A goal of 200 feet for the head loss has been

established to take into account the loss of energy due to

friction in the pipes. This head loss must be, at a minimum, 160

feet. In addition, a goal of 6480 in k of flexural strength is

desired in the beam. Define:

C, Cost of the pump subsystem,

C- - Cost of the beam subsystem,

H H-Head loss,

S - Flexural strength of the beam.

Prior experience has shown that C and C2 increase with If

17



and S in the following way:

2
C1  .0112511 + .875H, 19)

C,, . 05787S. (2O)

Assuming once again that the optimization at level 0 has supplied

the coefficients in the objective function that reflect the

trade-offs that would be considered appropriate at the top

level, the pump/beam optimization model can be written as:

(M2) min z dI + 5d + .0926d
1 23

such that

C1 + C2 - dI + d 1 900

H -d + d 200
2

S - d 3 + d 3 6480

Cl + C2  < 950

H > 160

d d- - 0, iz 1,2,3,

equations (19) and (20) hold and all variables in the model are

nonnegative. The optimal solution to (M2) is:

Z 96.875 d2 0 C2 = :375

dI = 0 d = 0 H = 183.34
+ +

dI = 13.59 d 3 = 0 S = 6480

d, = 16.66 CI = 538.59

4.2.1 Level 2 Models

Next consider the optimization of the pump subject to Ioc lI

constraints. In this example, assume that the headluss may I-e

expressed in terms of the flow rates (cubic feet/second), F ,

through pump i, i : 1,2:

18



H = A + 30F - 6F 2  (21)

S B + 20F2 - L2F2 (22)

In these expressions, A and B are parameters which specify

attributes of the pumps. The selection of the pumps is

restricted to

50 < A < 130 (23)

200 < B < 220. (24)

The amount of flow in each pump is restricted to be at least.

cubic feet/second.

Let Clj be the cost of pump j, j = 1,2. The cost. of the

pumps is related to the flow rate via

C1  = 100 F1  (25)

C 2  120 F. ( 2612( l F2"

The total budget for the pump subsystem will be at least $525.

The optimization model (M21) for the pump subsystem and the

optimal solution is given in appendix B.

The beam subsystem has design variables W and V, which

represent the width of the beam and the cross sectional area of

the reinforcing steel. For this example, it is assumed that the

reinforcing steel has standard sizes that come in .25 inc h

increments. The flexural strength, S, of the beam is related to

W and V by

V - .2458 Vý/W > S/1080. (27,

The unit cost of the concrete is $.02/square inch/liineal

foot. and the unit cost of steel is $1.00/square inch/lineal fool.

The Lent gth of the reinforcing steel is slightly less than the

length of the beam (29.4 feet), so that. th•e cost of' the steel is

given by 29.4V. The cost of the concrete is given by
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.02 x (cross-sectional area of the beam) X 30

.02 x (W x 30) x 30

18 W.

The width of the beam must be at least 8 inches to provide

sufficient support to the pump subsystem. Once again using

Theorem I, the oDtimization model (M22) for the beam subsystem

may be formulated and solved as shown in appendix C.

The value of' V in the solution of (M22) is not a integral

multiple of .25; as a result, this solution is not truly feasible

given the problem constraints. In order to achieve the opt ima

feasible solution, two new models (M23) and (M24) may be formed

from (M22) by adding the constraints V < 7.75 in the first case

and V > 8 in the second case. Model (M24) has no feasible

solution, while the optimal solution to (M23) is given by:

z = 12.69 2 z 3.15 S = 6376.32

++el = 103.05 e 2 = 0 W = 8

eI = 0 C 2 = 371.85 V = 7.75

This sojution is therefore the optimal attributes for the design

of the beam subsystem. The solution to (M21) and (M23) may 1.

used to generate constraints in order to further constrain the

solution to (M2). This would begin a new iteration of thie goal I

d(!composi t. ion a [gror i thm. However, a desi gner may dec ide thaI t $h-

design achieved by combining the solution to NM21) and (M23) .,

be satisfactory.

5. CONCLUDING REMARKS

This paper has attempted to develop a brad,•r perspective

20



of the engineering design problem by distinguishing the type of

optimization problems that occur at the top and lower levels of

the design hierarchy. One key feature of middle and lower level

optimizations is that. subsystem optimization does not correspond

directly to performance, cost, etc. optimization. A goal

decomposition method was described and illustrated for

subcomponent optimization. This decomposition method had a

natural objective function that tended to cause the solution of

the subproblem to drive the solution of the optimization on",

level higher to its best possible feasible solution.

The architecture of the decision support system described

using goal decomposition readily enhanced the iterative nature of

the design process. In the first example shown in this paper, a

single reoptimization found the best global solution to the

design problem once additional information was supplied to the

level I model by subsystem optimizations.
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APPENDIX A

+ 1 ÷
(Mll) min z -4920.34e+ + 4920.34e + e+

1 1 2

such that
+

R - e+ + e- .97896
+

C - e+ + e2 1544.52
1 22

R1 I R1 I(2 - RI )

R I .95

R I< I1<

R 1  < .8
+ --

e .e. = 0 i = 1,2

as well as equations (10), (11), and (14) and all variablts atC

nonnega t ive.

Optimal solution:
+

z 93.78 e + 0 C 1  = 1287.55

e = 0 2 = 256.97 Rl1 = .8

= 256.97 R = .96 C = 643.78

(M12) min z -48948e + 4894.8e I +

such that
+

R2  - e 1  + e= .98407

C - e + + ( 455.48
2 2 2 45.4

RI_ .95

R2 _< 1

R ' 9821
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R2 2  > .99

R9 17

e+e. = 0 i 1,2
13|

as well as equations (12), (13), and (16) and all variables are

non negat ive.

Optimal solution:

z 32.04 e 0 R2 2  .99747
2 2+

1= 0 e2 = 0 c2 = 455.48

e - .00655 R 2 97752 c 21 = 60

R 2 1  .98 C22 = 395 .48
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APPENDIX B

(M21) min z -5e + 5e -+ e -

such that

+He I + eI 1 . 98407

C - e + e- -- 538.59

C = 11 + C11 11~ 12

c > 525

F) 2

2 > 2
+ --

e e e 0 i 1,2

as well as equations (21)-(26) and all variables are nonnegative.

Optimal solution:

z = 73.25 C = 525 F = 4.71

e : 0 C11 = 199.54 F1 = 2

e = 17.37 C = 325.46 F 2  = 2.71

+

e = 0 A = 130 H 165.97

C,2: 13.59 B 200
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APPENDIX C
+_

(M22) min z .0926e- - e2  +e 2

such that

S - e1  + e 1 6480
+

C - e + e - 3752 2 2

C 2  = 29.4V + 18W

W >8

e e e 0 i = 1,2

as well as equation (27) and all variables are nonnegative.

Optimal solution:

z = 12.69 C2 = 375

+
e = 0 S = 6437.17

e = 103.05 W = 8

e C = 0 V 7.857

e, = 3.15
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